安科瑞 陳聰
摘要:隨著全球對可再生能源的關注不斷增加,雙碳能源技術成為應對氣候變化和實現碳中和目標的重要方向之一。雙碳能源技術是一種綠色、可持續的能源發展方向,光儲充一體系統作為其中的重要組成部分,具有將光能轉化為電能并進行儲存和供電的功能。文章對光儲充一體系統的設計與性能進行分析,以期為雙碳能源技術的推廣和應用提供技術支持。
關鍵詞:雙碳能源技術 ;光儲充一體系統 ;光伏發電 ;電能儲存
1、雙碳能源技術和光儲充一體系統分析
1.1雙碳能源技術
雙碳能源技術是一項綜合運用多種*進技術的戰略性能源方案,旨在降低能源生產與利用過程中的 CO2和甲烷排放,實現能源系統的低碳與低甲烷化。該技術涵蓋清潔能源生產、能源儲存與調度、碳排放控制與碳利用、甲烷排放控制及能效提升等關鍵技術領域。通過采用太陽能光伏、風力發電等清潔能源生產技術,以及電化學儲能、氫能儲存等能源儲存技術,實現了對可再生能源的*效利用。同時,通過碳捕獲與封存、碳利用技術,有效減少 CO2排放并實現其資源化利用。在甲烷排放方面,生物甲烷控制技術和監測技術有望降低甲烷排放水平。智能能源管理系統和*效用能技術的應用則有助于提高整體能源系統的效能。
1.2光儲充一體系統
光儲充一體系統是一種綜合利用太陽能的技術,其包括太陽能光伏發電、能量存儲和電池充電等功能。該系統的核心在于將太陽能轉化為電能,并將其儲存起來,以供電池充電或供電使用。光儲充一體系統是一種集成化的解決方案,有助于提高太陽能利用效率,減少電能浪費,以及實現可持續能源的管理和利用。光儲充一體系統(圖1)包括太陽能光伏發電組件、能量存儲裝置(如鋰電池或電容器)及智能電池管理系統。太陽能光伏發電組件通過光電效應將太陽輻射轉化為直流電能,然后,能量存儲裝置將電能存儲起來,以備不時之需,*后,智能電池管理系統監控和管理電池的充放電過程,確保系統的穩定性和可靠性 [1]。
2、光儲充一體系統設計
2.1 太陽能光伏組件選擇與設計
在太陽能光伏組件選擇與設計方面,采用*效的單晶硅太陽能電池板,提高能量轉換效率,具備*越的適應性和耐候性。通過*密布局和傾斜角設置,*大程度地優化電池板的日照接收,并通過詳盡的陰影分析,*小化陰影損失。選擇效率超過20% 的單晶硅太陽能電池板,確保系統在有限空間內獲得*大能量收集。在電池和充電控制器選擇方面,采用高能量密度、輕量和長壽命的鋰離子電池,搭配*進的*大功率點跟蹤(MPPT)充電控制器,以*大化充電效率并對電池進行保護。通過高度優化的固定支架或雙軸追蹤系統,確保光伏組件在不同季節和天氣條件下*大程度地接收太陽輻射[2]。引入多層次的實時監控系統及遠程監控和報警系統,監測電池狀態、光伏組件性能和充電控制器運行情況等,以保障實時性的數據記錄。*后,為確保光儲充一體系統的可持續運行,引入自動清潔系統,并制訂了定期巡檢計劃,以定期檢查電纜連接和系統組件,以充分發揮光儲充一體系統在能源收集和利用方面的潛力。
2.2 儲能設備選擇與設計
在儲能設備選擇與設計方面,選擇鋰離子電池儲能系統作為*佳解決方案,考慮其高能量密度、長壽命和輕量特性。通過進行系統能量需求分析,確定額定容量和*大充放電功率,以適應周期性和突發性負載需求。優化連接方案,將儲能系統與太陽能光伏組件和充電控制器集成,*小化能量轉換損失。考慮循環壽命,實施深度充放電管理、溫度控制和充電電流控制,以*大程 度延長電池壽命。集成*家法規標準,采用安全措施,如溫度傳感器和電流限制,以預防安全風險。進行*面的經濟性分析,考慮投資成本、運營維護成本和電池壽命成本,以確保經濟可行性。制訂定期的維護計劃,監測電池健康狀態、檢查連接線路和系統軟硬件,以確保儲能系統長期穩定運行[3]。
2.3 電力轉換器設計
在電力轉換器設計中,選用*效的直流 – 交流逆變器,以*小化能量損耗,滿足系統直流電能向交流電能轉換的需求。通過功率容量匹配、電流和電壓穩定性控制,確保逆變器適應各種負載變化,同時優化響應時間和效率。引入智能控制策略,實時監測電力需求和太陽能光伏系統輸出,以*大化能量利用。配置過載和短路保護機制,保障系統安全運行。整合溫度管理系統,提高逆變器在高溫環境下的運行效率和壽命。通過遙測與監控系統,遠程監測逆變器性能,記錄關鍵參數,實現故障診斷和性能優化。這一系列措施旨在提高電力轉換器的效能,為光儲充一體系統提供穩定、*效的電能轉換[4]。
2.4 控制系統設計
在控制系統設計方面,采用*進的 MPPT 算法,提高光伏組件的能量利用效率。結合智能充放電控制,優化儲能設備的運行,以適應動態的電能需求。配置遠程監控系統,實現對系統狀態的實時監測與遠程管理。這一*面的控制系統設計旨在*大程度地提高系統整體性能,確保光儲充一體系統在不同工況下實現*效穩定的運行。
3、光儲充一體系統性能分析
3.1 能量轉換效率分析
太陽能光伏組件中的*效單晶硅電池板選擇和*密設計的布局使得系統在不同日照條件下能夠*大化吸收太陽輻射,從而實現高能量轉換效率。采用的單晶硅太陽能電池板具有超過20% 的效率,這使得系統在有限的空間內能夠獲得*大的能量收集。通過電池和充電控制器的*效設計,系統有效地將太陽能轉化為直流電能,并通過儲能設備中的鋰離子電池實現能量的*效儲存。在電力轉換器方面,選用了*效的直流 – 交流逆變器,逆變器在將儲存的直流電能轉換為交流電能時,通過*進的 MPPT 算法,光伏組件的能量輸出得到*大化。同時,系統實時監測電力需求、光伏發電和儲能狀態,通過智能控制策略優化能量的分配,使得系統在動態電能需求變化中保持*效運行。某遙測與監控系統的實時數據記錄顯示,在不同天候和負載條件下,系統的總體能量轉換效率維持在85% 以上。
3.2 儲能效率分析
儲能效率直接關系到儲能系統對太陽能的有效吸收和釋放。儲能效率的主要影響因素包括充電和放電的過程效率及電池的自放電損失。經過深度充放電管理、溫度控制和適當的充電電流控制,系統成功降低了充電和放電階段的能量損失。根據 IEC 61683,充電階段的效率可達到95% 以上,而放電階段的效率維持在90% 以上。這一數據表明,系統在能量的儲存和釋放過程中表現*色,有效地優化了能源管理并降低了損耗。在電池管理系統(BMS)的引導下,系統成功實現了對電池循環壽命的*大化控制。通過*密的電池監控系統,實時監測電池的狀態,包括電壓、電流和溫度等參數。此外,系統采用*進的 BMS 算法對電池進行均衡管理,進一步確保電池組件的壽命得到有效延長。根據 IEC 61683,在標準運行條件下,整個儲能系統的總體儲能效率維持在85% 以上。這一儲能效率的高水平表明系統在吸收太陽能并將其轉化為電能,以及在需要時有效釋放電能方面取得了顯著成功。
3.3 供電穩定性分析
光伏組件的*效能量轉換和電池的高能量密度確保了系統在太陽能供應下能夠產生穩定的直流電源。具體而言,采用的單晶硅太陽能電池板在典型日照條件下實現了超過20% 的轉換效率,有效提高了光伏組件的能量輸出。此外,系統通過高度優化的固定支架或雙軸追蹤系統,確保光伏組件在不同季節和天氣條件下都能*大程度地接收太陽輻射,從而提高了系統的穩定供電能力。通過深度充放電管理和溫度控制,系統成功維護了儲能設備的*效運行,確保了在非太陽能供應時能夠提供穩定的電能輸出。在儲能系統的充電和放電過程中,根據IEC 61683可知,系統能夠保持95% 以上的能量轉換效率,從而提高了系統對電能的可靠利用。電力轉換器作為能量傳遞的關鍵環節,通過采用*效率的直流 – 交流逆變器,實現了直流電能向交流電能的穩定轉換。在標準操作條件下,這些逆變器的轉換效率可達到90% 以上,確保系統在交流電能輸出時*小化能量損耗,顯著提高了供電的穩定性。這些性能指標來源于行業標準測試報告和逆變器制造商的技術規格,保證了數據的準確性和可靠性。
3.4 可靠性與壽命分析
采用的單晶硅太陽能電池板具有較低的光衰減率,從而保證了系統在多年的運行中能夠保持較高的能量輸出。系統的陰影分析和組件布局設計有效減小了陰影損失,*大程度地提高了光伏組件的可靠性。儲能設備方面,鋰離子電池以其低自放電率和較長的循環壽命為系統提供了可靠的儲能媒介。深度充放電管理和溫度控制有助于減緩電池的壽命衰減過程。實時電池監控系統對電池狀態進行細致監測,可及時發現異常情況并采取措施,有效提升了電池的壽命。根據相關數據可知,電池組件在正常運行條件下能夠保持高達10 a 以上的壽命。根據 IEC 62040可知,這些逆變器的設計壽命在標準操作條件下能夠達到15 a 以上,體現了其*越的可靠性。這種持久的性能確保了系統整體的連續穩定性,為長期的能源供應提供了可靠的技術保障。
4、Acrel-2000MG微電網能量管理系統概述
4.1概述
Acrel-2000MG微電網能量管理系統,是我司根據新型電力系統下微電網監控系統與微電網能量管理系統的要求,總結國內外的研究和生產的*進經驗,專門研制出的企業微電網能量管理系統。本系統滿足光伏系統、風力發電、儲能系統以及充電樁的接入,*天候進行數據采集分析,直接監視光伏、風能、儲能系統、充電樁運行狀態及健康狀況,是一個集監控系統、能量管理為一體的管理系統。該系統在安全穩定的基礎上以經濟優化運行為目標,促進可再生能源應用,提高電網運行穩定性、補償負荷波動;有效實現用戶側的需求管理、消除晝夜峰谷差、平滑負荷,提高電力設備運行效率、降低供電成本。為企業微電網能量管理提供安全、可靠、經濟運行提供了全新的解決方案。
微電網能量管理系統應采用分層分布式結構,整個能量管理系統在物理上分為三個層:設備層、網絡通信層和站控層。站級通信網絡采用標準以太網及TCP/IP通信協議,物理媒介可以為光纖、網線、屏蔽雙絞線等。系統支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。
4.2技術標準
本方案遵循的*家標準有:
本技術規范書提供的設備應滿足以下規定、法規和行業標準:
GB/T26802.1-2011工業控制計算機系統通用規范*1部分:通用要求
GB/T26806.2-2011工業控制計算機系統工業控制計算機基本平臺*2部分:性能評定方法
GB/T26802.5-2011工業控制計算機系統通用規范*5部分:場地安全要求
GB/T26802.6-2011工業控制計算機系統通用規范*6部分:驗收大綱
GB/T2887-2011計算機場地通用規范
GB/T20270-2006信息安全技術網絡基礎安全技術要求
GB50174-2018電子信息系統機房設計規范
DL/T634.5101遠動設備及系統*5-101部分:傳輸規約基本遠動任務配套標準
DL/T634.5104遠動設備及系統*5-104部分:傳輸規約采用標準傳輸協議子集的IEC60870-5-網絡訪問101
GB/T33589-2017微電網接入電力系統技術規定
GB/T36274-2018微電網能量管理系統技術規范
GB/T51341-2018微電網工程設計標準
GB/T36270-2018微電網監控系統技術規范
DL/T1864-2018獨立型微電網監控系統技術規范
T/CEC182-2018微電網并網調度運行規范
T/CEC150-2018低壓微電網并網一體化裝置技術規范
T/CEC151-2018并網型交直流混合微電網運行與控制技術規范
T/CEC152-2018并網型微電網需求響應技術要求
T/CEC153-2018并網型微電網負荷管理技術導則
T/CEC182-2018微電網并網調度運行規范
T/CEC5005-2018微電網工程設計規范
NB/T10148-2019微電網*1部分:微電網規劃設計導則
NB/T10149-2019微電網*2部分:微電網運行導則
4.3適用場合
系統可應用于城市、高速公路、工業園區、工商業區、居民區、智能建筑、海島、無電地區可再生能源系統監控和能量管理需求。
4.4型號說明
4.5系統配置
4.5.1系統架構
本平臺采用分層分布式結構進行設計,即站控層、網絡層和設備層,詳細拓撲結構如下:
圖1典型微電網能量管理系統組網方式
4.6系統功能
4.6.1實時監測
微電網能量管理系統人機界面友好,應能夠以系統一次電氣圖的形式直觀顯示各電氣回路的運行狀態,實時監測各回路電壓、電流、功率、功率因數等電參數信息,動態監視各回路斷路器、隔離開關等合、分閘狀態及有關故障、告警等信號。其中,各子系統回路電參量主要有:三相電流、三相電壓、總有功功率、總無功功率、總功率因數、頻率和正向有功電能累計值;狀態參數主要有:開關狀態、斷路器故障脫扣告警等。
系統應可以對分布式電源、儲能系統進行發電管理,使管理人員實時掌握發電單元的出力信息、收益信息、儲能荷電狀態及發電單元與儲能單元運行功率設置等。
系統應可以對儲能系統進行狀態管理,能夠根據儲能系統的荷電狀態進行及時告警,并支持定期的電池維護。
微電網能量管理系統的監控系統界面包括系統主界面,包含微電網光伏、風電、儲能、充電樁及總體負荷組成情況,包括收益信息、天氣信息、節能減排信息、功率信息、電量信息、電壓電流情況等。根據不同的需求,也可將充電,儲能及光伏系統信息進行顯示。
圖2系統主界面
子界面主要包括系統主接線圖、光伏信息、風電信息、儲能信息、充電樁信息、通訊狀況及一些統計列表等。
4.6.1.1光伏界面
圖3光伏系統界面
本界面用來展示對光伏系統信息,主要包括逆變器直流側、交流側運行狀態監測及報警、逆變器及電站發電量統計及分析、并網柜電力監測及發電量統計、電站發電量年有效利用小時數統計、發電收益統計、碳減排統計、輻照度/風力/環境溫濕度監測、發電功率模擬及效率分析;同時對系統的總功率、電壓電流及各個逆變器的運行數據進行展示。
4.6.1.2儲能界面
圖4儲能系統界面
本界面主要用來展示本系統的儲能裝機容量、儲能當前充放電量、收益、SOC變化曲線以及電量變化曲線。
圖5儲能系統PCS參數設置界面
本界面主要用來展示對PCS的參數進行設置,包括開關機、運行模式、功率設定以及電壓、電流的限值。
圖6儲能系統BMS參數設置界面
本界面用來展示對BMS的參數進行設置,主要包括電芯電壓、溫度保護限值、電池組電壓、電流、溫度限值等。
圖7儲能系統PCS電網側數據界面
本界面用來展示對PCS電網側數據,主要包括相電壓、電流、功率、頻率、功率因數等。
圖8儲能系統PCS交流側數據界面
本界面用來展示對PCS交流側數據,主要包括相電壓、電流、功率、頻率、功率因數、溫度值等。同時針對交流側的異常信息進行告警。
圖9儲能系統PCS直流側數據界面
本界面用來展示對PCS直流側數據,主要包括電壓、電流、功率、電量等。同時針對直流側的異常信息進行告警。
圖10儲能系統PCS狀態界面
本界面用來展示對PCS狀態信息,主要包括通訊狀態、運行狀態、STS運行狀態及STS故障告警等。
圖11儲能電池狀態界面
本界面用來展示對BMS狀態信息,主要包括儲能電池的運行狀態、系統信息、數據信息以及告警信息等,同時展示當前儲能電池的SOC信息。
圖12儲能電池簇運行數據界面
本界面用來展示對電池簇信息,主要包括儲能各模組的電芯電壓與溫度,并展示當前電芯的*大、*小電壓、溫度值及所對應的位置。
圖13風電系統界面
本界面用來展示對風電系統信息,主要包括逆變控制一體機直流側、交流側運行狀態監測及報警、逆變器及電站發電量統計及分析、電站發電量年有效利用小時數統計、發電收益統計、碳減排統計、風速/風力/環境溫濕度監測、發電功率模擬及效率分析;同時對系統的總功率、電壓電流及各個逆變器的運行數據進行展示。
圖14充電樁界面
本界面用來展示對充電樁系統信息,主要包括充電樁用電總功率、交直流充電樁的功率、電量、電量費用,變化曲線、各個充電樁的運行數據等。
圖15微電網視頻監控界面
本界面主要展示系統所接入的視頻畫面,且通過不同的配置,實現預覽、回放、管理與控制等。
4.6.2發電預測
系統應可以通過歷史發電數據、實測數據、未來天氣預測數據,對分布式發電進行短期、超短期發電功率預測,并展示合格率及誤差分析。根據功率預測可進行人工輸入或者自動生成發電計劃,便于用戶對該系統新能源發電的集中管控。
圖16光伏預測界面
系統應可以根據發電數據、儲能系統容量、負荷需求及分時電價信息,進行系統運行模式的設置及不同控制策略配置。如削峰填谷、周期計劃、需量控制、有序充電、動態擴容等。
圖17策略配置界面
應能查詢各子系統、回路或設備*定時間的運行參數,報表中顯示電參量信息應包括:各相電流、三相電壓、總功率因數、總有功功率、總無功功率、正向有功電能等。
圖18運行報表
4.6.5實時報警
應具有實時報警功能,系統能夠對各子系統中的逆變器、雙向變流器的啟動和關閉等遙信變位,及設備內部的保護動作或事故跳閘時應能發出告警,應能實時顯示告警事件或跳閘事件,包括保護事件名稱、保護動作時刻;并應能以彈窗、聲音、短信和電話等形式通知相關人員。
圖19實時告警
4.6.6歷史事件查詢
應能夠對遙信變位,保護動作、事故跳閘,以及電壓、電流、功率、功率因數、電芯溫度(鋰離子電池)、壓力(液流電池)、光照、風速、氣壓越限等事件記錄進行存儲和管理,方便用戶對系統事件和報警進行歷史追溯,查詢統計、事故分析。
圖20歷史事件查詢
4.6.7電能質量監測
應可以對整個微電網系統的電能質量包括穩態狀態和暫態狀態進行持續監測,使管理人員實時掌握供電系統電能質量情況,以便及時發現和消除供電不穩定因素。
1)在供電系統主界面上應能實時顯示各電能質量監測點的監測裝置通信狀態、各監測點的A/B/C相電壓總畸變率、三相電壓不平衡度*分百和正序/負序/零序電壓值、三相電流不平衡度*分百和正序/負序/零序電流值;
2)諧波分析功能:系統應能實時顯示A/B/C三相電壓總諧波畸變率、A/B/C三相電流總諧波畸變率、奇次諧波電壓總畸變率、奇次諧波電流總畸變率、偶次諧波電壓總畸變率、偶次諧波電流總畸變率;應能以柱狀圖展示2-63次諧波電壓含有率、2-63次諧波電壓含有率、0.5~63.5次間諧波電壓含有率、0.5~63.5次間諧波電流含有率;
3)電壓波動與閃變:系統應能顯示A/B/C三相電壓波動值、A/B/C三相電壓短閃變值、A/B/C三相電壓長閃變值;應能提供A/B/C三相電壓波動曲線、短閃變曲線和長閃變曲線;應能顯示電壓偏差與頻率偏差;
4)功率與電能計量:系統應能顯示A/B/C三相有功功率、無功功率和視在功率;應能顯示三相總有功功率、總無功功率、總視在功率和總功率因素;應能提供有功負荷曲線,包括日有功負荷曲線(折線型)和年有功負荷曲線(折線型);
5)電壓暫態監測:在電能質量暫態事件如電壓暫升、電壓暫降、短時中斷發生時,系統應能產生告警,事件能以彈窗、閃爍、聲音、短信、電話等形式通知相關人員;系統應能查看相應暫態事件發生前后的波形。
6)電能質量數據統計:系統應能顯示1min統計整2h存儲的統計數據,包括均值、*大值、*小值、95%概率值、方均根值。
7)事件記錄查看功能:事件記錄應包含事件名稱、狀態(動作或返回)、波形號、越限值、故障持續時間、事件發生的時間。
圖21微電網系統電能質量界面
4.6.8遙控功能
應可以對整個微電網系統范圍內的設備進行遠程遙控操作。系統維護人員可以通過管理系統的主界面完成遙控操作,并遵循遙控預置、遙控返校、遙控執行的操作順序,可以及時執行調度系統或站內相應的操作命令。
圖22遙控功能
4.6.9曲線查詢
應可在曲線查詢界面,可以直接查看各電參量曲線,包括三相電流、三相電壓、有功功率、無功功率、功率因數、SOC、SOH、充放電量變化等曲線。
4.6.10統計報表
具備定時抄表匯總統計功能,用戶可以自由查詢自系統正常運行以來任意時間段內各配電節點的用電情況,即該節點進線用電量與各分支回路消耗電量的統計分析報表。對微電網與外部系統間電能量交換進行統計分析;對系統運行的節能、收益等分析;具備對微電網供電可靠性分析,包括年停電時間、年停電次數等分析;具備對并網型微電網的并網點進行電能質量分析。
圖24統計報表
4.6.11網絡拓撲圖
系統支持實時監視接入系統的各設備的通信狀態,能夠完整的顯示整個系統網絡結構;可在線診斷設備通信狀態,發生網絡異常時能自動在界面上顯示故障設備或元件及其故障部位。
圖25微電網系統拓撲界面
本界面主要展示微電網系統拓撲,包括系統的組成內容、電網連接方式、斷路器、表計等信息。
4.6.12通信管理
可以對整個微電網系統范圍內的設備通信情況進行管理、控制、數據的實時監測。系統維護人員可以通過管理系統的主程序右鍵打開通信管理程序,然后選擇通信控制啟動所有端口或某個端口,快速查看某設備的通信和數據情況。通信應支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。
應具備設置用戶權限管理功能。通過用戶權限管理能夠防止未經授權的操作(如遙控操作,運行參數修改等)。可以定義不同級別用戶的登錄名、密碼及操作權限,為系統運行、維護、管理提供可靠的安全保障。
應可以在系統發生故障時,自動準確地記錄故障前、后過程的各相關電氣量的變化情況,通過對這些電氣量的分析、比較,對分析處理事故、判斷保護是否正確動作、提高電力系統安全運行水平有著重要作用。其中故障錄波共可記錄16條,每條錄波可觸發6段錄波,每次錄波可記錄故障前8個周波、故障后4個周波波形,總錄波時間共計46s。每個采樣點錄波至少包含12個模擬量、10個開關量波形。
可以自動記錄事故時刻前后一段時間的所有實時掃描數據,包括開關位置、保護動作狀態、遙測量等,形成事故分析的數據基礎。
用戶可自定義事故追憶的啟動事件,當每個事件發生時,存儲事故*10個掃描周期及事故后10個掃描周期的有關點數據。啟動事件和監視的數據點可由用戶*定和隨意修改。
圖29事故追憶
5、硬件及其配套產品
序號 | 設備 | 型號 | 圖片 | 說明 |
1 | 能量管理系統 | Acrel-2000MG | 內部設備的數據采集與監控,由通信管理機、工業平板電腦、串口服務器、遙信模塊及相關通信輔件組成。 數據采集、上傳及轉發至服務器及協同控制裝置 策略控制:計劃曲線、需量控制、削峰填谷、備用電源等 | |
2 | 顯示器 | 25.1英寸液晶顯示器 | 系統軟件顯示載體 | |
3 | UPS電源 | UPS2000-A-2-KTTS | 為監控主機提供后備電源 | |
4 | 打印機 | HP108AA4 | 用以打印操作記錄,參數修改記錄、參數越限、復限,系統事故,設備故障,保護運行等記錄,以召喚打印為主要方式 | |
5 | 音箱 | R19U | 播放報警事件信息 | |
6 | 工業網絡交換機 | D-LINKDES-1016A16 | 提供16口百兆工業網絡交換機解決了通信實時性、網絡安全性、本質安全與安全防爆技術等技術問題 | |
7 | GPS時鐘 | ATS1200GB | 利用gps同步衛星信號,接收1pps和串口時間信息,將本地的時鐘和gps衛星上面的時間進行同步 | |
8 | 交流計量電表 | AMC96L-E4/KC | 電力參數測量(如單相或者三相的電流、電壓、有功功率、無功功率、視在功率,頻率、功率因數等)、復費率電能計量、 四象限電能計量、諧波分析以及電能監測和考核管理。多種外圍接口功能:帶有RS485/MODBUS-RTU協議:帶開關量輸入和繼電器輸出可實現斷路器開關的"遜信“和“遙控”的功能 | |
9 | 直流計量電表 | PZ96L-DE | 可測量直流系統中的電壓、電流、功率、正向與反向電能。可帶RS485通訊接口、模擬量數據轉換、開關量輸入/輸出等功能 | |
10 | 電能質量監測 | APView500 | 實時監測電壓偏差、頻率俯差、三相電壓不平衡、電壓波動和閃變、諾波等電能質量,記錄各類電能質量事件,定位擾動源。 | |
11 | 防孤島裝置 | AM5SE-IS | 防孤島保護裝置,當外部電網停電后斷開和電網連接 | |
12 | 箱變測控裝置 | AM6-PWC | 置針對光伏、風能、儲能升壓變不同要求研發的集保護,測控,通訊一體化裝置,具備保護、通信管理機功能、環網交換機功能的測控裝置 | |
13 | 通信管理機 | ANet-2E851 | 能夠根據不同的采集規的進行水表、氣表、電表、微機保護等設備終端的數據果集匯總: 提供規約轉換、透明轉發、數據加密壓縮、數據轉換、邊緣計算等多項功能:實時多任務并行處理數據采集和數據轉發,可多鏈路上送平臺據: | |
14 | 串口服務器 | Aport | 功能:轉換“輔助系統"的狀態數據,反饋到能量管理系統中。 1)空調的開關,調溫,及*全斷電(二次開關實現) 2)上傳配電柜各個空開信號 3)上傳UPS內部電量信息等 4)接入電表、BSMU等設備 | |
15 | 遙信模塊 | ARTU-K16 | 1)反饋各個設備狀態,將相關數據到串口服務器: 讀消防VO信號,并轉發給到上層(關機、事件上報等) 2)采集水浸傳感器信息,并轉發3)給到上層(水浸信號事件上報) 4)讀取門禁程傳感器信息,并轉發 |
結束語
隨著“雙碳”目標推進,我國光伏、儲能、新能源汽車發展不斷進步,“光伏 + 儲能 + 充電”組合也被越來越多地應用到市場中。光儲充一體系統通過精心選擇與設計,在太陽能光伏組件、儲能設備和電力轉換器方面取得了顯著成果。優化的太陽能電池板、鋰離子電池和*效逆變器,使系統在能量轉換效率、儲能效率和供電穩定性方面表現*越。監測機制和管理策略確保了系統在長期運行中的可靠性和壽命。電池組件10 a 以上的壽命和逆變器15 a以上的設計壽命突顯了系統的可靠性。這一綜合性能的提升為清潔能源的應用提供了可行的、可持續的解決方案,為可再生能源的推廣和發展作出巨大貢獻。
參考文獻
[1] 梁淑燁 .“雙碳”目標下資源型城市能源治理困境及對策研究[D]. 大慶 :東北石油大學,2023.
[2] 王晉偉 . 低碳能源技術追蹤預測決策支持系統的開發設計[J]. 中國市場,2022(13):128-132.
[3] 劉金豆,成杰,俞高偉 . 基于低壓直流配電網并網的并離網一體光儲發電系統研究 [J]. 華電技術,2021(4):63- 70.
[4] 高文韜 . 低碳能源技術發展戰略研究 [J]. 科技風,2016 (23):91.
[5] 梁永全 . 分布式光儲一體并網發電系統的設計與研究 [J]. 通訊世界,2018(5):132-133.
[6] 朱立剛,鄭小敏.雙碳能源技術中的光儲充一體系統設計與性能分析[A].電力系統,2024
[7] 安科瑞企業微電網設計與應用設計,2022,05